Top quality welding equipment
Here are a few tricks on TIG welders and how to make the best buying picks. The welding setup, welder settings, and electrode selection will impact how fast welders can work. Industrial welders invest time in planning the size and shape of their welding areas, how parts are laid out, and how they supply their shielding gas. Testing settings or an electrode on a piece of scrap metal, especially for a beginners, will save time in the long run. Learn more about setting up an efficient shop here. Welding Downhill Increases Welding Speed: While welding downhill is a faster way to weld, it’s not as strong as welding uphill. On most projects it’s not worth sacrificing strength and durability for the sake of welding speed. However, if the metal is thin enough, then welding downhill won’t make the weld weaker and may even be the correct technique for the job. Learn about uphill and downhill welding and see these diagrams of vertical and downhill welding.
MIG Welders are extremely popular because they tend to cost less than TIG or Stick welders with comparable power and features, are extremely easy to learn, and can tackle a wide variety of projects. Since the filler metal is fed through the MIG welding torch, welders can use both hands to hold the torch steady rather than using one hand to add filler metal, as in TIG welding. The wire feeder also makes MIG welding up to four times faster. The MIG welding process uses an inert gas to shield the weld and to keep it free from impurities. This makes MIG welding very neat and easy to clean up since there isn’t anything to chip away, which is typical for Stick welding. MIG welding can be used on a wide variety of materials such as aluminum and is also frequently used for automotive work. However, MIG also requires the purchase of shielding gas and generally requires materials that cost more when compared to other methods.
Delivery of parts to the welding station in an organized and logical fashion is also a way to reduce welding costs. For example, one company was manufacturing concrete mixing drums. In the fabrication process, the company produced 10 parts for one section, then went on to make 10 parts of another drum section, etc. As pieces came off the line, they were put onto the floor of the shop. When it was time to weld, the operator had to hunt for the pieces needed and sort through them. When the outside welding expert pointed out the amount of time being wasted in this process, the company started to batch each one on a cart. In this way, the pieces needed to weld one drum were stored together and could easily be moved to the welding area. This type of scenario is also true for companies that may outsource parts to a vendor. Though it may cost more to have parts delivered in batches, it may save more in time than having to organize and search through parts to be able to get to the welding stage. How many times each piece is handled in the shop may be an eye-opener to reducing wasted time. To measure such an intangible as this, operators are asked to put a soapstone mark on the piece each time it is touched – some companies are surprised to find out how many times a part is picked up, transported and laid down in the manufacturing process. In the case of one company, moving the welding shop closer to the heat treatment station eliminated four extra times that the part was handled. Basically, handling a part as few times as possible and creating a more efficient production line or work cell will reduce overall costs. Searching for the best Welding Equipment? We recommend Welding Supplies Direct & associated company TWS Direct Ltd is an online distributor of a wide variety of welding supplies, welding equipment and welding machine. We supply plasma cutters, MIG, TIG, ARC welding machines and support consumables to the UK, Europe and North America.
Argon is not the only shielding gas used for TIG welding: Shielding gasses for TIG welding Argon is not the only shielding gas used for TIG welding…just the most common and versatile. Argon will usually get the job done. But there are times when some helium mixed with argon makes a world of difference. Especially if you are using a small inverter TIG welder that is limited to around 200 amps. 100% Argon – is the most often used and coolest gas ..the best all around gas. 75% Argon/25% Helium – even 25% helium will make a big difference when welding aluminum that is thicker than .063″. Anything under .063″ thick and helium is unnecessary. 50/50 argon/helium—awesome for thick aluminum and magnesium 75% Helium/25% Argon – Awesome for thick aluminum castings… puddles really quick and welds cleaner than 100% argon. Also good for welding bronze and pure copper on DCEN.
Several welding supplies tricks: how to become a more skilled welder and how to pick the best welding equipment. For DCEN welding on steels, 1/16″ will work in the 20 to 100 amp rage as long as you prep it right. If you are using 20 amps, you will need a needle sharp point to get good crisp arc starts. At 100 amps, you might not want quite a needle sharp point or you might be putting a smidge of tungsten in the weld. You need a blunter taper. Some charts extend the range to 150 amps for 1/16, but I think that’s way too much. Why not just swap to a 3/32 at that amperage.? 3/32″ is good from about 65 – 200 amps. And 1/8″ 2% thoriated electrodes are good in the 85 – 300 amp range. ( Drop all these numbers by about 30% for A/C) Using helium mixed with the argon will also change the recommended currents because the arc is hotter with the same amps. These recommendations are from down and dirty experience and don’t come from a chart. Most charts I have seen tell you a 1/16 tungsten is good all the way to 150 amps…Please.
Following some simple tips can help you take your MIG welding operation to the next level and ensure you are as safe, efficient and professional as any other shop. Welding helmets, gloves, close-toed shoes and clothes that fully cover exposed skin are essential. Make sure you wear flame-resistant natural fibers such as denim and leather, and avoid synthetic materials that will melt when struck by spatter, potentially causing burns. Also, avoid wearing pants with cuffs or shirts with pockets, as these can catch sparks and lead to injuries.
Do a practice run. This may sound silly, but you’ll find that many professional welders do this before every pass. Get in the most comfortable position you can, with support blocks in place if helpful, and run your hands along the path they will traverse as you make the weld. You will often find that a slight adjustment of your position will allow you to make a longer pass, or to move your hands with less stress. Any strain in your position will have a negative impact on the weld. Also, you build valuable muscle memory when making your practice run, which will help keep everything on track when you make the ‘real’ pass. Clean a contaminated electrode immediately! Every welder will contaminate their electrode at some point, but it’s essential that you replace a contaminated electrode immediately. I usually keep a group of pre-sharpened electrodes right on my welding bench, so I can swap them out without having to walk to my grinder. Source: https://www.weldingsuppliesdirect.co.uk/.
Comments
Comments are closed.